Simplifying Parallelization of Scientific Codes by a Function-Centric Approach in Python
نویسندگان
چکیده
The purpose of this paper is to show how existing scientific software can be parallelized using a separate thin layer of Python code where all parallel communication is implemented. We provide specific examples on such layers of code, and these examples may act as templates for parallelizing a wide set of serial scientific codes. The use of Python for parallelization is motivated by the fact that the language is well suited for reusing existing serial codes programmed in other languages. The extreme flexibility of Python with regard to handling functions makes it very easy to wrap up decomposed computational tasks of a serial scientific application as Python functions. Many parallelization-specific components can be implemented as generic Python functions, which may take as input those functions that perform concrete computational tasks. The overall programming effort needed by this parallelization approach is rather limited, and the resulting parallel Python scripts have a compact and clean structure. The usefulness of the parallelization approach is exemplified by three different classes of applications in natural and social sciences. Submitted to: Computational Science & Discovery Simplifying Parallelization of Scientific Codes 2
منابع مشابه
PyClaw: Accessible, Extensible, Scalable Tools for Wave Propagation Problems
Development of scientific software involves tradeoffs between ease of use, generality, and performance. We describe the design of a general hyperbolic PDE solver that can be operated with the convenience of MATLAB yet achieves efficiency near that of hand-coded Fortran and scales to the largest supercomputers. This is achieved by using Python for most of the code while employing automatically-w...
متن کاملStarFlow: A Script-Centric Data Analysis Environment
We introduce StarFlow, a script-centric environment for data analysis. StarFlow has four main features: (1) extraction of control and data-flow dependencies through a novel combination of static analysis, dynamic runtime analysis, and user annotations, (2) command-line tools for exploring and propagating changes through the resulting dependency network, (3) support for workflow abstractions ena...
متن کاملHandling Nested Parallelism and Extreme Load Imbalance in an Orbital Analysis Code
Nested parallelism exists in scientific codes that are searching multi-dimensional spaces. However, implementations of nested parallelism often have overhead and load balance issues. The Orbital Analysis code we present exhibits a sparse search space, significant load imbalances, and stopping when the first solution is reached. All these aspects of the algorithm exacerbate the problem of using ...
متن کاملAccessible, Extensible, Scalable Tools for Wave Propagation Problems
Development of scientific software involves tradeoffs between ease of use, generality, and performance. We describe the design of a general hyperbolic PDE solver that can be operated with the convenience of MATLAB yet achieves efficiency near that of hand-coded Fortran and scales to the largest supercomputers. This is achieved by using Python for most of the code while employing automatically-w...
متن کاملAn approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1002.0705 شماره
صفحات -
تاریخ انتشار 2010